Aspecten van de broedbiologie van de Meerkot *Fulica atra* in een ongewoon habitat

Jacques Van Impe

Aspects of the breeding biology of the Coot *Fulica atra* in an uncommon habitat

Abstract

Because of the very low reproduction rate of the Coot (1,05 ± 0,21 fledged young/pair/year, Table 7 and 9) on the left bank of the river Scheldt near Antwerp (Belgium), its breeding biology was studied during the years 1984-1990. The man-made habitat created by fossil sands supplied in a former polder area showed a number of adverse characteristics for the production of this species. The simultaneous occurrence of shallow water with the water-level rapidly receding, the poor development of emergent vegetation and of aquatic life has never been previously described. The risk of nest predation potentially increased by the high breeding density (Table 1), the great number of nests on dry land (Figure 1), the bulk nest construction (Figure 2) which was so easily visible, and a shortage of nest covering (Figure 3 and 4). Nest success (Table 3) and the mean number of fledged juveniles/pair/year (Table 7) were influenced in a negative way by the rapid drying-up of the breeding habitats. This phenomenon was also supposed to be responsible for the formation of crèches. Despite the many unfavourable habitat circumstances, nest success was still rather good (Table 3) and hatching success came up to normal values (Table 4) as compared with the literature. However, clutch size (Table 2) and especially the family-size of two-week-old young, were low (Table 6). The mortality rate in the first five weeks amounted to 47%. About 75% of this severe loss took place in the two weeks after hatching. This was the reason why a time - activity study was made among young and their parents by the scan-sampling method (Table 8). Young spent an excessive time in sleeping and resting (73,0 ± 7,2) and only 17,7% ± 7,3% of the time available was reserved for feeding themselves and being fed. However, parents spent a substantial time in feeding their young, but the latter did insufficiently respond to this care. From these observations one could conclude that young received unsuited food from their parents, deficient in animal proteins. Seeing that it mainly consisted of plant material supports this statement. Contamination of the soil with heavy metals was probably the cause of this shortage. This investigation stresses the great value of the scan-sampling method in explaining low reproduction rates in waterfowl.


Inleiding


Materiaal en methoden

Onderzoeksgebied.


Een oriënterend onderzoek, uitgevoerd in vijf opgespoten terreinen tijdens juni-juli 1984 en 1985, wees op troebele water, van eutrofe kwaliteit: nitraat - N: X = 2,7 (2,4 - 3,3)mg.l’ (n = 16) en orthofosfaat - P: X = 0,47 (0,41 - 0,58)mg.l’ (n = 16). Het aquatisch leven bleek weinig ontwikkeld. Larven van vedermuggen *Chironomidae* kwamen pas overvloedig voor vanaf augustus en in de vegetatie waren slakken *Gasteropoda*, bloedzuigers *Hirudinea*, de Zoetwaterpissebed *Asellus aquaticus* en zoetwaterwanten (o.m.*Corixidae*), schaars vertegenwoordigd of afwezig.
Alle plassen werden gekenmerkt door een geringe waterdiepte, die maar op enkele plaatsen 1 tot 1,8 m bedroeg bij het begin van het broedseizoen. De weinig ontwikkelde vegetatiegordels omvatten maximaal 15% van de terreinoppervlakte en kwamen laattijdig, in de tweede helft van april, tot groei; de verlandingszone was doorgaans weinig begroeid. Naast grassem kwamen op alle terreinen kleine velden (10 - 150 m²) Lis Dodd LodTelpha, Zeelies Scirpus maritimus, Riet Pheragmites australis, Ziltte Rus Juncus gerardii en Ziltte Aster tripolium voor.


Broeddichtheid.

Door de verschijning van vroege najaarsrekens vanaf eind mei, kon deze niet afgeleid worden uit het aantal aanwezige vogels. Daarom berustte zij uitsluitend op nestinvantarisatie. Deze telling gebeurde 32 maal tijdens de loop van het onderzoek, in terreinen met een oppervlakte van minder dan 1 ha tot 10 ha en van 20 tot 25 ha.

Neststand.

Uit een breder onderzoek werd alleen de zichtbaarheid van het nest uitgewerkt: de hoogte van de nestrand tegenover het water- of grondoppervlak en de graad van nestbescherming. Deze is procentueel uitgedrukt als het aandeel van de nestomtrek door plantengroei omgeven. Alle metingen zijn verricht in een vroeg broedstadium en herhaald na het uitlopen van de kuikens.

Legbegin en legsgrootte.

Beide onderzoeken werden alleen bij eerste legsels gedaan; enkele vervanglegsels kunnen in deze reeks zijn ingeslopen. Van 148 legsels was de datum van het legbegin met zekerheid gekend en voor 132 overige is deze berekend uit de kipdatum van het laatste ei, volgens de gegevens van Glutz von Blotzheim et al. (1973).

Nestsucces.

Een nest werd als succesvol aanzien wanneer minimum één ei kipte. Bij eerste nesten is het nestsucces bepaald in functie van de snelheid van uitdroging der broderreinen, het seizoenverloop en de graad van bescherming van de nestom.

Uitkomstsucces.

Dit werd afzonderlijk berekend voor de reeks succesvol en mislukte legsels (alle legsels, "Schlupferfolg") en voor de reeks uitsluitend succesvolle legsels ("Schlupfrate"). In de jaren 1985 en 1986 werd te weinig materiaal verzameld voor de eerstgenoemde reeks.

Jongensterfte.

Steunend op het werk van Heimroth (1928), werden de kuikens van de waargenomen tomen ingedeeld in leeftijdsklassen van één week, ten einde hun gemiddelde wekelijkse overleving te bepalen. Het gemiddeld aantal jongen per succesvol paar is elk jaar berekend op plaatsen met gekende broedresultaten van alle paren (= regelmatig bezochte terreinen) en op plaatsen zonder deze kennis (= toevallig bezochte terreinen). Het gemiddeld aantal vliegvlugge jongen per paar volgde uit de eerste reeks. In 1986 is voor beide reeksen te weinig materiaal verzameld.

Bepaling van de verdeling tijd-activiteit bij tomen.


Resultaten

Broeddichtheid.


<table>
<thead>
<tr>
<th>Oppervlakte broedplaats (ha)</th>
<th>Aandeel oevervegetatie (%)</th>
<th>n</th>
<th>Broedpaar / 10 ha (min. - max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface breeding grounds (ha)</td>
<td>Proportion shore vegetation</td>
<td></td>
<td>Breeding pairs / 10 ha (min. - max.)</td>
</tr>
<tr>
<td>&lt;1</td>
<td>10 - 15</td>
<td>2</td>
<td>(61.5)</td>
</tr>
<tr>
<td>1 - 5</td>
<td>8 - 15</td>
<td>11</td>
<td>27.8 (21.2 - 33.4)</td>
</tr>
<tr>
<td>5 - 10</td>
<td>5 - 13</td>
<td>9</td>
<td>21.0 (12.7 - 32.8)</td>
</tr>
<tr>
<td>20 - 25</td>
<td>8 - 12</td>
<td>10</td>
<td>9.0 (3.8 - 15.1)</td>
</tr>
</tbody>
</table>


Table 1: Breeding densities of the Coot on the man-made habitats at the left bank of the river Scheldt in Antwerp, 1984 - 1990.

Neststand.

In een vroeg broedstadium waren 236 (73%) van 323 nesten volledig door water omgeven; 16 (5%) bevonden zich aan de waterrand en 71 (22%) lagen op het droge (Figuur 1),
een wel opvallend hoog aantal in vergelijking met de bevindingen uit Cramp en Simmons (1980). Na het uitlopen der jongen steeg dit aantal op het droge zelfs tot 58% en waren vier nesten op meer dan 200 m van enig water verwijderd.

Een overwicht van nesten in de vorm van een toren was opmerkelijk: 96% op een totaal van 383; onder hen waren 35% niet verankerd aan de omgevende begroeiing. In een vroeg broedstadium viel 76% (n = 121) van de nestranden in een klassehoogte tussen 11 en 20 cm boven het water- of grondoppervlak (Figuur 2). Door het onderliggende water en de hiermee samengaande vlugte uitdroging nam na het uitlopen van de kuikens deze hoogte nog aanzienlijk toe (test van Kolmogorov-Smirnov, tweeënduizend, D = 0,209; P < 0,025).

De bescherming van de nestkorn bestond bijna in alle gevallen uit afgestorven Riet. Zij was zeer ijil bij het begin van het broeden: 60% van de nesten vertoonden een bescherming die geen 25% van de nestomtrek bestreek en bij 17% ontbrak zij volledig (Figuren 3 en 4). Bovendien was de afdekking van de opvallende torennesten erg doorzichtig. Metingen van de rietsengel-dichtheid over proefoppervlakten van 0,25 m² maakten dit duidelijk. Bij het broedbegin en na het uitlopen van de kuikens kwamen wij dichtheden van respectievelijk 13 ± 9 stengels/m² (n = 29) en 22 ± 12 stengels/m² (n = 31).

De veel voorkomende stand van hoge en onvoldoende beschermde nesten op het droge, gaf een samenloop van een reeks ongunstige omstandigheden. Hierdoor verhoogden de kansen op een mogelijke nestpredatie aanzienlijk.

Legbegin en legselgrootte.

Slechts 1,4% van de vrouwtjes (n = 280, Tabel 2) kwam tot eileg in maart; april was de belangrijkste maand (68,1%), met een piek in de tweede en de derde decade (mediënn = 23 april). Eerste leg in mei (23,9%) en in juni (5,3%) viel ook nog toe te schrijven aan eerste legsels, want tweede legsels zijn gedurende het gehele studieverloop nooit met zekerheid gevonden. Deze late broeders waren reeds twee à drie weken voor de eileg in hun toekomstig broedgebied aanwezig.


Bij 299 eerste legsels varieerde het aantal eieren tussen 2 en 15. Een 13- en een 15-legsel zijn aanzien als a-specifiek, zodat 297 legsels, van 2 tot 11 eieren, overbleven voor de bepaling van het gemiddelde. Dit bedroeg 6,76 ± 1,63 voor het gehele seizoen van de onderzoeksjaren. (Tabel 2). Niet alle legsels werden gevonden vanaf het eerste ei; voor 148 legsels met een gekende datum van eerste eileg bedroeg het gemiddelde 6,86 ± 1,72 ei, waarde die bij vorige aansluit. De legselgrootte nam tijdens het seizoenverloop aanzienlijk af, van april naar mei (t = 7,16; P < 0,001) en van mei naar juni (t = 2,80; P < 0,01). Zij varieerde gevoelig van jaar tot jaar en scheen gebonden aan de gemiddelde dagelijkse temperatuur in maart. Indien jaren met meer dan 40 nestvondsten per seizoen gepoold werden tot een tweejarige "gunstige" groep (1985 en 1989: 7,36 ± 1,56 ei, n = 109) en een tweejarige "ongunstige" groep (1987 en
1988: $6,41 \pm 1,53$ ei, $n=117$), was het verschil van nagenoeg één ei tussen beide groepen zeer significant ($t_{122} = 4,61$; $P<0,001$). Dit verschil bleek in verband te staan met een hogere gemiddelde dagelijkse temperatuur in maart: $6,4 \pm 2,1^\circ C$ voor de gunstige en $4,5 \pm 1,8^\circ C$ voor de ongunstige groep ($t_{122} = 3,05$; $P<0,01$). Beide jaargroepen zijn vervolgens vergeleken met de gegevens uit de maandbulletins van het K.M.I., voor wat betreft hun gemiddelde dagelijkse temperatuur in april, hun dagelijkse neerslag in maart en april en hun gemiddelde verdamping in beide maanden. Geen van deze parameters vertoonde een significante invloed op de legselgrootte.

### Tabel 2: Begin van eileg (per decade) en gemiddelde grootte van eerste legsel bij de Meerkoot Fulica atra.

<table>
<thead>
<tr>
<th></th>
<th>Begin eileg First egg</th>
<th>Legselgrootte Clutch size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n$ legels/eggs</td>
<td>$n$ legels/eggs</td>
</tr>
<tr>
<td>Maart</td>
<td>3 1 0,3</td>
<td>4 30 (7,50 ± 2,38)</td>
</tr>
<tr>
<td>March</td>
<td>3 1 1,1</td>
<td>4 30 (7,50 ± 2,38)</td>
</tr>
<tr>
<td>April</td>
<td>3 1 12,1</td>
<td>208 1498 7,20 ± 1,52</td>
</tr>
<tr>
<td>Mei</td>
<td>3 1 12,1</td>
<td>67 393 5,86 ± 1,27</td>
</tr>
<tr>
<td>May</td>
<td>3 1 21,5</td>
<td>67 393 5,86 ± 1,27</td>
</tr>
<tr>
<td>Juni</td>
<td>3 1 4,3</td>
<td>18 88 4,89 ± 1,28</td>
</tr>
<tr>
<td>June</td>
<td>3 1 0,0</td>
<td>18 88 4,89 ± 1,28</td>
</tr>
<tr>
<td>Juli</td>
<td>1 1 0,3</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>280 100,0</td>
<td>297 2009 6,76 ± 1,63</td>
</tr>
</tbody>
</table>

### Figuur 4: Percentage van de nestomtrek door begroeiing beschermd, Antwerpen, 1984-1990. Broedbegin (n=250); na uitlopen der kuikens (n=276).

Figuur 4: Percentage of the nest circumference protected by coverage. Antwerp, 1984-1990. Beginning of breeding (n=250); after leaving of chicks (n=276).

Naar gelang het onderzochte terrein varieerde het succes van eerste nesten tussen 56% en 82%. De met weinig water voorziene spuitvelden E en A, die reeds in het voorjaar volledig uitdroogden, tijdens twee van de zeven onderzoeksjaren, gaven het minste succes. Toch was deze terreinen invloed niet statistisch aantoonbaar ($X^2 = 5,94$; $P>0,2$). Het succes van eerste nesten vertoonde een neiging tot afname gedurende het seizoengevallen: 71% (n=80), 64% (n=56) en 56% (n=16) succes voor respectievelijk de eerste en de tweede helft van april en voor mei ($X^2 = 1,71$; N.S.).

In tegenstelling tot de algemene verwachtingen, kenden eerste nesten een ruimte die 25% van de nestomtrek bestreek, een beter succes dan nesten met een bescherming die 25% van de nestomtrek overstrof: 77,9% (n=86) tegen 63,7% (n=77) ($X^2 = 3,87$; $P<0,05$). Bij 62 nesten was het verlies in 89% van de gevallen aan predatie toe te schrijven en 11% van de nesten werden gealleerd, meestal tijdens de leg of bij het begin van het broeden.
<table>
<thead>
<tr>
<th>Breeding ground</th>
<th>Opper- vlakte (ha)</th>
<th>Eerste nesten</th>
<th>Vervangnesten</th>
<th>Alle nesten</th>
<th>Jaar en periode bijna volledige uitdroging broedplaats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface (ha)</td>
<td>First nests</td>
<td>Repeat nests</td>
<td>All nests</td>
<td>Year and period of nearly complete dryness of breeding ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n + % +</td>
<td>n + % +</td>
<td>n + % +</td>
<td>Begin juni Early June</td>
</tr>
<tr>
<td>C</td>
<td>21,8</td>
<td>22 18 81,8</td>
<td>3 2</td>
<td>25 20 80,0</td>
<td>90</td>
</tr>
<tr>
<td>D</td>
<td>23,2</td>
<td>46 34 74,0</td>
<td>6 5</td>
<td>52 39 75,0</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>9,9</td>
<td>52 35 67,4</td>
<td>8 7</td>
<td>60 42 70,0</td>
<td>090</td>
</tr>
<tr>
<td>E</td>
<td>23,6</td>
<td>41 27 65,9</td>
<td>7 6</td>
<td>48 33 68,7</td>
<td>089</td>
</tr>
<tr>
<td>A</td>
<td>8,1</td>
<td>50 28 56,0</td>
<td>7 5</td>
<td>57 33 57,9</td>
<td>090</td>
</tr>
<tr>
<td>Σ</td>
<td>211 142 67,3</td>
<td>31 25 80,6</td>
<td>242 167 69,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


**Table 3: Success (+) of first nests and of repeat nests in the Coot in five breeding grounds. Antwerp, 1984 - 1990.**

**Uitkomstsucces der eieren.**

Het uitkomstsucces in de reeks "alle legsels" bedroeg 54,3 ± 8,9% (n = 1435, Tabel 4), met een hoge coëfficiënt van variatie, nl. 16,4%. Voor de reeks "alleen succesvolle legsels" (n = 1449) varieerde het uitkomstsucces maar weinig gedurende het zesjarig onderzoek: 86,7 ± 3,1%, C.V. = 3,6%. De spreiding van de resultaten in de eerste reeks bleek o.m. veroorzaakt door een verschil in predatiedruk tussen de verschillende broedplaatsen. Dit uiteraard is eveneens het hele onderzoek in het eierlies op vier belangrijke broedplaatsen: 61,0% (n = 311), 33,1% (n = 263), 29,8% (n = 80) en 23,4% (n = 127) (test van Kruskal-Wallis, H = 5,60; P = 0,05). Overigens speelde predatie een belangrijke rol bij het eierlies in de reeks "alle legsels": 72,4% op 655 eieren (Tabel 5). In de reeks "alleen succesvolle legsels" was het eierlies (n = 192) door predatie minster uitgesproken, nl. 22%, indien althans eieren die tijdens het broeden verdwenen, ook als gepredateerd beschouwd worden. Andere voornamme oorzaken van eierlies waren het niet-kippen (44,8%) en het uit het nest vallen vallen eieren (12,5%).

**Jongensterfte.**

Tabel 6 toont dat de jongensterfte over alle onderzochte terreinen niet veel afnam tussen de leeftijdsklassen van 2 en 5 weken: ongeveer 0,7 juy./paar (n = 181). In de reeks "regelmatig bezochte broedplaatsen" ligt een toename van 0,5 juy./paar buiten de verwachting. Deze stijging dient toegeschreven aan de vorming van creches (zie discussie). Een vlugge uitdroging van het broedterrein, met zoals vermeld een geringer nestsucces (Tabel 3), liet zich ook kennen door een kleinere toomgrootte (Tabel 7). Terrein C, dat in juni-juli van alle onderzoeksjaren een ruim wateroppervlak behield (zie Tabel 3), gaf 2,5 ± 0,17 vlugge jongen/paar. Daarentegen leverden de terreinen A en E, met twee jaar van bijna volledige uitdroging tijdens het onderzoek, maar 0,27 ± 0,37 vlugge jongen/paar (n = 65). De uitslagen van de terreinen D en B, met één jaar uitdroging, vielen tussen beide uitersten. De voortplantingsresultaten van deze drie terreingroepen onderscheiden zich statistisch (test van Kruskal-Wallis, n = 14; H = 11,00; P < 0,01). Het belang van een ruim wateroppervlak bij het broedbegin wordt daardoor aangetoond. Alle terreinen samen gaven een gemiddelde van nauwelijks 1,05 ± 0,21 grootgebracht jongen/paar/jaar, een ontevredend lage uitkomst. Een uitgesproken sterfte van kleine kuikens was hierbij opmerkelijk, zoals uit de volgende berekening mag blijken. Een legselgrootte van 6,8 ± 1,6 eit (Tabel 2) en een uitkomstsucces van 86,7 ± 3,1% bij succesvolle legsels (Tabel 4) geven 5,9 kuikens per

<table>
<thead>
<tr>
<th>Jaar</th>
<th>n nesten nests</th>
<th>n eieren eggs</th>
<th>n gekipt hatched</th>
<th>% gekipt hatched</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>52</td>
<td>250</td>
<td>54,2</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>18</td>
<td>242</td>
<td>59,0</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>47</td>
<td>167</td>
<td>44,2</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>28</td>
<td>112</td>
<td>65,5</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>210</td>
<td>1449</td>
<td>86,7 ± 3,1</td>
<td></td>
</tr>
</tbody>
</table>


**Table 4: Hatching success in all clutches of the Coot compared to successful clutches only. Antwerp, 1985 - 1990.**

7

**Table 5: Causes of egg-failure in all clutches of the Coot compared to successful clutches only. Antwerp, 1985 - 1990.**

<table>
<thead>
<tr>
<th>Alle legels</th>
<th>Successful legels</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>All clutches</strong></td>
<td><strong>Successful clutches</strong></td>
</tr>
<tr>
<td>n eieren /eggs</td>
<td>%</td>
</tr>
<tr>
<td>Gepredateerd / Predated</td>
<td>474</td>
</tr>
<tr>
<td>Verlaten / Deserted</td>
<td>54</td>
</tr>
<tr>
<td>Niet gekipt / Not hatched</td>
<td>59</td>
</tr>
<tr>
<td>Verdwenen / Disappeared</td>
<td>19</td>
</tr>
<tr>
<td>Uitgesloten / Knocked out</td>
<td>24</td>
</tr>
<tr>
<td>Onbekend / Unknown</td>
<td>25</td>
</tr>
<tr>
<td><strong>Σ</strong></td>
<td>655</td>
</tr>
</tbody>
</table>


**Table 6: Mean number of juveniles/pair in the Coot arranged per age-classes. Antwerp, 1984 - 1990.**

<table>
<thead>
<tr>
<th>Ouderdom (weken) / Age (weeks)</th>
<th>Toevallig bezochte broedplaatsen / Arbitrarily visited breeding grounds</th>
<th>Regelmatig bezochte broedplaatsen / Regularly visited breeding grounds</th>
<th>Alle broedplaatsen / All breeding grounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n paren pairs</td>
<td>juv./paar</td>
<td>n paren pairs</td>
</tr>
<tr>
<td>2</td>
<td>141</td>
<td>3,81</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>238</td>
<td>3,42</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>209</td>
<td>3,18</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>116</td>
<td>3,14</td>
<td>43</td>
</tr>
<tr>
<td>&gt; 5</td>
<td>132</td>
<td>3,32</td>
<td>49</td>
</tr>
</tbody>
</table>


**Table 7: Mean number of fledged juveniles/pair/year in the Coot in three regularly visited breeding grounds. Including unsuccessful pairs. Antwerp, 1984 - 1990.**

<table>
<thead>
<tr>
<th>Jaar / Year</th>
<th>Breeding ground</th>
<th>C</th>
<th>D + B</th>
<th>A + E</th>
<th>Alle broedplaatsen 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n paren pairs</td>
<td>juv./paar</td>
<td>n paren pairs</td>
<td>juv./paar</td>
<td>n paren pairs</td>
</tr>
<tr>
<td>1985</td>
<td>8</td>
<td>2,50</td>
<td>28</td>
<td>1,61</td>
<td>65</td>
</tr>
<tr>
<td>1987</td>
<td>5</td>
<td>2,80</td>
<td>19</td>
<td>1,47</td>
<td>6</td>
</tr>
<tr>
<td>1988</td>
<td>4</td>
<td>2,50</td>
<td>22</td>
<td>1,13</td>
<td>20</td>
</tr>
<tr>
<td>1989</td>
<td>5</td>
<td>2,40</td>
<td>15</td>
<td>0,60</td>
<td>12</td>
</tr>
<tr>
<td>1990</td>
<td>22</td>
<td>2,54 ± 0,17</td>
<td>101</td>
<td>1,33 ± 0,43</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Broedplaats</th>
<th>Voedingsactiviteiten</th>
<th>Andere activiteiten</th>
<th>Subtotaal</th>
<th>BE</th>
<th>VE</th>
<th>VO</th>
<th>AG</th>
<th>WA</th>
<th>Subtotaal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feeding activities</td>
<td>Other activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BE(1)</td>
<td>PI</td>
<td>GH</td>
<td>DU</td>
<td>SL + RU(1)</td>
<td></td>
<td>BE</td>
<td>VE</td>
<td>VO</td>
</tr>
<tr>
<td>I A</td>
<td>Jongen/Young</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>&lt; 1</td>
<td>21</td>
<td>72</td>
<td>7</td>
<td>&lt; 1</td>
</tr>
</tbody>
</table>
Periode | Ouders/Parents | 0 | 19 | 0 | 23 | 42 | 6 | 20 | 13 | 17 | 2 | < 1 | 58 |
Period | (7-10a/h) | D | Jongen/Young | 20 | 3 | < 1 | 0 | 23 | 67 | 10 | < 1 | 0 | 0 | 77 |
|      | Ouders/Parents | 0 | 16 | 2 | 15 | 33 | 6 | 28 | 7 | 23 | 3 | 0 | 67 |
|      |              |       |       |       |       |       |       |    |    |    |    |       | |
| II A | Jongen/Young | 2 | 6 | 0 | 8 | 77 | 13 | 2 | 0 | 0 | 0 | 92 |
|      | Ouders/Parents | 0 | 13 | 1 | 12 | 26 | 13 | 12 | 17 | 32 | < 1 | 0 | 74 |
| Period | Period | (11-15a/h) | D | Jongen/Young | 4 | 5 | 2 | 0 | 11 | 83 | 4 | 1 | 0 | 0 | 88 |
|      | Ouders/Parents | 0 | 17 | 0 | 6 | 23 | 14 | 19 | 12 | 31 | 1 | < 1 | 77 |
|      |              |       |       |       |       |       |       |    |    |    |    |       | |
| III A | Jongen/Young | 7 | 7 | 2 | 16 | 76 | 7 | < 1 | 0 | 0 | 0 | 83 |
|      | Ouders/Parents | 0 | 19 | 0 | 18 | 37 | 6 | 25 | 9 | 18 | 4 | 1 | 63 |
 Period | Period | (18-20a/h) | D | Jongen/Young | 11 | 12 | 4 | < 1 | 27 | 63 | 10 | < 1 | 0 | 0 | 73 |
|      | Ouders/Parents | 0 | 23 | 0 | 18 | 41 | 5 | 26 | 11 | 14 | 3 | < 1 | 59 |
|      |              |       |       |       |       |       |       |    |    |    |    |       | |
| Jongen/Young | 9,8 | 1,7 | 17,7 | 8,5 | 0,0 | 0,0 |
| Ouders/Parents | 6,1 | 0,3 | 33,6 | 21,7 | 0,9 | 0,0 |
| Gehele dag | Whole day | ±6,8 | ±1,4 | ±7,3 | ±3,1 | ±0,3 | ±2,3 |
|       |       | ±6,1 | ±0,3 | ±7,2 | ±2,1 | ±0,9 | ±2,2 |

22,5 ± 7,5% van de beschikbare tijd. Uit deze resultaten werd het vaststaan van een vanhoudend vermoed dus
de tijd dat de ouders aan de voedering van hun kuikens
schonen en de ontvankelijkheid van de kuikens
deur de zorg beantwoordden.

**Discussie**

**Invloed van een reeks ongunstige factoren op nestsucces en uitkomstsucces.**

Volgens Anders (1977) nam in Berlijn en omgeving (Dui.) het aantal goed zichtbare, abnormale nesten van de Meerkoet tussen 1963 en 1976 met 37% toe. Dit fenomeen was gebonden aan een frequentere bezetting van ongewone
biotopen en aan een verhoogde broeddichtheid. Dezelfde
vaststellingen lijken geldig voor A.L.. In het vroege
broedstadium is hier het water, dat 236 nesten omgeeft,
gemiddeld 18,7 ± 9,2 cm diep en 22% van 323 nesten ligt
waterdiepte van 35 à 60 cm. Bovendien zijn losse, plat
nesten, die minder kans lopen gepredateerd te
worden, nauwelijks gevonden in ons gebied, terwijl deze
bij Melde (1962 en 1968) en bij Havlin (1967) respectievelijk
77% en meer dan 90% van alle nestvondsten uitmaakten.

Te A.L. zijn hoge torennesten de regel. De nestrand verheft zich boven het water- of grondoppervlak gemiddeld 16,2 ± 5,1 cm bij het begin en 19,4 ± 4,5 cm bij het einde van
het broeden. Dit zijn doorgaans hoge waarden in
vergelijking met de bevindingen van andere auteurs. Bij
Repa (1974) bijvoorbeeld, bedroeg de gemiddelde hoogte
slechts 12,5 cm.

Als de bescherming van het nest is zeer gebrekkig te
A.L..(Figuren 3 en 4): slechts 29,1 ± 6,8% en 38,3 ± 7,7%
van de nestomtrek krijgt respectievelijk bij het begin en het einde van het broeden bescherming door een dunne vegetatie. Tellingen van de stengeldichtheid rond het nest geeft volgens de criteria, opgesteld door Salonen en Penttinen (1988), geringe waarden. Een goed afdekende nesthui, die bij Kornowski (1957) in 37% der gevallen als nestbeschermers voorkwam, is te A.L. maar bij 0,3% van de nesten opgemerkt. In 1989 en 1990 zijn te A.L. 77% van de broedvogels (n = 168) volledig zichtbaar bij het broedbegin, terwijl Salathé (1986) in de Camargue (Zuid-Frankrijk) slechts 58% van de broedende vogels (n = 140) kon zien.


Kan nu deze samenloop van velerlei ongunstige omstandigheden het nestsucces, dat 69% bedraagt voor het geheel van 242 nesten (Tabel 3) reëel beïnvloed hebben? In vele onderzoeken overtrof het nestsucces 80% (Havlín 1970; Sanchez Moreno 1974; Fiala 1978; Keller 1985; Kuroshkin en Koshelev 1989) of varieerde tussen 70% en 80% (Blum 1963). Heel wat auteurs vermelden echter een veel geringer nestsucces dan te A.L. het geval was: 55,5% (Repa 1979), 53% (Krause in Hasse en Wobus 1971), 31% (Jacoby in Glutz van Blotzheim et al. 1973) en zelfs 24,7% (Nilsson en Persson 1987). Volgens Blum (1963), Havlin (1970) en Repa (1979) is een nestsucces beneden 75% abnormaal. Specifieke factoren, eigen aan de broedbiotoop, zouden hiervoor verantwoordelijk zijn (zie ook Munteanu 1970). De uitkomst in onze studie ligt echter niet veel lager dan deze voorgestelde limiet. Ook stellen wij vast dat kale nesten, een significant beter succes konden dan meer be- schutte nesten. Deze beschouwingen doen twijfel ontstaan of er een verband is tussen genoemde ongunstige factoren en de geringe opbrengst van vluglvogels jongen (1,05 ± 0,21 /paar/jaar, Tabel 7) in ons gebied. De beoordeling van het uitkomstsucces van de eieren (Tabel 4) verstevigd bij on- onderzoek deze twijfel. Het kipsucces van de reeks "alle legels' wordt bijna onaniem o minder dan 50% gesteld (Alley en Boyd 1947; Lelek 1958; Aaskaner 1959; Sage 1969; Hasse en Wobus 1971), tegen 54 ± 9% in deze studie.

**Legselgrootte.**


**Crechevorming, jongensterfte en het gedrag van tomen.**

<table>
<thead>
<tr>
<th>Gebied Area</th>
<th>n paren pairs</th>
<th>$\bar{x}$ juv./paar</th>
<th>Auteur Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sovjetunie, vijf gebieden Soviet Union, five areas</td>
<td>7</td>
<td>3,9 - 7,0</td>
<td>Kuroshkin en Koshelev (1989)</td>
</tr>
<tr>
<td>Tsjechoslowakije Czechoslovakia</td>
<td>231</td>
<td>3,63</td>
<td>Fiala (1978)</td>
</tr>
<tr>
<td>Sleeswijk - Holstein Schleswig - Holstein</td>
<td>80</td>
<td>2,85 - 3,90</td>
<td>Kornowski (1957)</td>
</tr>
<tr>
<td>Tsjechoslowakije Czechoslovakia</td>
<td>57</td>
<td>2,4</td>
<td>Repa (1974)</td>
</tr>
<tr>
<td>Oost-Duitsland Eastern Germany</td>
<td>24</td>
<td>2,1</td>
<td>Schönborn (1983)</td>
</tr>
<tr>
<td>Tsjechoslowakije Czechoslovakia</td>
<td>114</td>
<td>2,0 - 2,3</td>
<td>Repa (1979)</td>
</tr>
<tr>
<td>Zuid-Zweden Southern-Sweden</td>
<td>20</td>
<td>2,05</td>
<td>Askaner (1959)</td>
</tr>
<tr>
<td>Groot-Brittannië Great-Britain</td>
<td>14</td>
<td>2,0</td>
<td>Alley en Boyd (1947)</td>
</tr>
<tr>
<td>Antwerpen, België Antwerp, Belgium</td>
<td>212</td>
<td>1,05</td>
<td>Deze studie This study</td>
</tr>
<tr>
<td>Groot-Brittannië Great-Britain</td>
<td>70</td>
<td>1,01</td>
<td>Sage (1969)</td>
</tr>
</tbody>
</table>

Tabel 9: Gemiddeld aantal vliegvlugge juvenielen/paar/jaar bij de Meerkoot *Fulica atra* in verschillende delen van het broedareaal. Niet succesvolle paren meegerekend.

Table 9: Mean number of fledged juveniles/pair/year in the Coot in different parts of the breeding range, including unsuccessful pairs.

jongensterfte in de eerste levensweek tijdens een tweejarig onderzoek in Nederland maar 13% en 22%. Kuroshkin en Koshelev (1989) vermelden een jongensterfte van 19,6% tot 38,3% in zes deelgebieden van de vroegere Sovjetunie. Meerdere auteurs hebben in hun studie niet vermeld of het aantal grootgebrachte jongen/paar berekend werd voor alle paren, of voor alleen succesvolle paren (zie ook Glutz et al. 1973). Dit nadeel beperkte de inhoud van Tabel 9, die een overzicht geeft van het aantal vliegvlugge jongen/paar/jaar bij alle paren, de mislukte inbegrepen, over grote delen van het broedareaal. De slechte voortplanting te A.L. vindt in deze tabel alleen een gelijka in een Britse studie, uitgevoerd in een nog jong waterbekken met een onvolledig tot ontwikkeling gekomen oeverbegroeiing (Sage 1969).


Een studie van de verdeling tijd-activiteit bij tomen Meerkoten bleef tot heden weinig onderzocht in Europa, maar Ryan en Dinsmore (1980) en Driver (1988) gaven waardevolle resultaten omtrent dit onderwerp bij tomen *F. americana*. Tot 20 dagen oude pulli spendeerden volgens Driver (1988) een hoger aandeel van hun tijdsbudget aan voedingsactiviteiten dan te A.L.: 30,5% te Saskatchewan (Canada) tegen 17,7% ± 3,7% te A.L. (Tabel 8) en een geringer deel aan het geheel der klassen van andere activiteiten: 69,5% tegen 82% ± 7,1%. Vooral de tijd besteed aan slapen en rusten was voor pulli significant belangrijker te A.L. dan in voornoemd gebied: 73,0% ± 7,2% tegen 43,1% (Mann-Whitney U test; $n = 3, n = 6, U = 0; P = 0,01$). Het werk van Ryan en Dinsmore (1980) gaf voor de ouders een verhouding van 0,21 ($n = 9$) tussen de tijd besteed aan de voeding van hun kuikens en hun eigen voeding. In ons gebied bedroeg deze verhouding 0,67 ($n = 6$, uit Tabel 8) ($U = 0; P < 0,01$). De keuze van kuikens van verschillende ouderdom (<20 dagen in Canada en ≤7 dagen te A.L.) is een vergelijking tussen beide getallen niet vrij van kritiek. De uitslag suggereert nochtans zeer sterk dat te A.L. de oudervogels wel voldoende voedsel aanbrengen, maar dit voedsel door de kuikens in een beperkte mate wordt aangenomen. Bij kuikens observeren wij hier, naast de geringe

![Meerkoot Fulica atra](Foto: A.C. Zwaga)
voedingsactiviteit en een overmatige tijd besteed aan slapen en rusten, een herhaaldelijk passief blijven bij plantaarplant voedselaanbod van de ouders. Meerkroeskikken hebben een hoge behoefte aan dierlijke proteïnen (Fitzner et al. 1980). Dit wordt bevestigd door de bevindingen van Driver (1988) en Borowiec (1975). De eerste auteur vond 84% dierlijk materiaal in het voedselaanbod voor kuikens F. americana en de tweede 43,1% voor kuikens F. atra in Polen. Ook volgt uit de werken van Sooter (1941) en Blum (1963) dat dierlijke eiwitten domineren in het dieet van pulli. Aan deze stelling werd te A.L. blijkbaar niet voldaan. De gekende verontreiniging van de bodem met zware metalen, die door hun toxische uitwerking de ontwikkeling van waterinsecten belemmeren, was misschien de hoofdshuldige van dit tekort aan dierlijke eiwitten.

Dankwoord

Een oprecht woord van dank wordt gericht aan Dr. G. Demarée (Afdeling Hydrologie, K.M.I.), voor zijn hulp bij de interpretatie van de meteorologische waarnemingen. De Directie van de Dienst Ontwikkeling Linker Scheldeoever en in het bijzonder Ir. A. Van Doninck waren op velerlei wijze behulpzaam tijdens het verloop van het onderzoek. Dr. A. Anselin, Dr. A. Rappe (*) R. De Fraine, W. Roggeman en B. Ch. Van Damme voorzagen de tekst van gewaardeerde, kritische opmerkingen.

Samenvatting

Naar aanleiding van het zeer gering voortplantingssucces bij de Meerkoet te Antwerpen-Linkeroever (1,05 ±0,21 vliegvlug jaar/jaar, Tabel 7 en 9) werd hier de broedbiologie van deze soort in de periode 1984-1990 bestudeerd. De biotopen ontsloten door opsporing van een voornamelijk poldergebied en waren gebetond door een samenloop van ongunstige omstandigheden voor de voortplanting, die in geen andere studie te vinden waren. De potentiele kansen op nestopgedreven werden verhoogd door de hoge broeddichtheid (Tabel 1), het groot aantal nesten op het droge (Figuur 1), de zware en erg zichtbare bouw van de nesten (Figuur 2) en een tekort aan nestbescherming (Figuur 3 en 4). De snelheid van uitdroging van de broedplaatsen beïnvloedde het nestsucces (Tabel 3) en het aantal vliegvlugge juvenielen/jaar/jaar negatief (Tabel 7) en werd verantwoordelijk geacht voor crèchevorming. Spits deze vele ongunstige kenmerken van de biotoop waren zowel nestsucces (Tabel 3) als uitkomstsucces (Tabel 4) niet abnormaal laag in vergelijking met de literatuur. De legselgrootte (Tabel 2) en vooral de toomgrootte bij twee weken oude jongen (Tabel 6) waren echter gering. De jongensterfte tussen het kippen en een ouderdom van 5 weken bedroeg 47%. Van dit zwaar verlies kwam ongeveer 75% op rekening van de eerste twee levensweken. Om de oorzaak van deze sterfte te achterhalen, werd gepoogd de verdeling tijd - activiteit bij kuikens en hun ouders volgens de "scan-sampling"-methode te onderzoeken (Tabel 8). De kuikens besteden een overmatige tijd aan slapen en rusten (73,0 ±7,2%) en vertoonden een geringe voedingsactiviteit (17,7 ±7,3%). De ouders besteedden nochtans veel tijd aan het voederen van hun kuikens, maar deze zorg bleef onvolledig beantwoord. Hieruit kon voorzichtig het besluit getrokken worden dat de kuikens geen gepast voedsel werd aangeboden, met een tekort aan dierlijke eiwitten. Nader onderzoek wees uit dat zij van hun ouders vooral plantaarplant voedsel aangerekend kregen. Een verontreiniging van de bodem met zware metalen, met als gevolg een armoede aan dierlijke prooi, was wellicht verantwoordelijk voor dit verkeerde aanbod. De grote waarde van de "scan-sampling"-methode voor de opheffering van slechte voortplantingsresultaten bij watervogels, wordt door dit onderzoek aangetoond.

Referenties

50 jaar geleden...

Watersnip


Fr. Segers, Turnhout